The quadratic relation $h=-5 t^{2}+210$ describes the path of a rock that falls from the 1 of a cliff, with h representing the height in metres and t representing the time in seconds a) Complete the table. Then graph the relation.

$$
h=-5 t^{2}+210
$$

$t(\mathrm{~s})$	$h(\mathrm{~m})$
0	
1	
2	
3	
4	
5	
6	

b) What is the height of the cliff?
c) How long will it take the rock to reach the bottom of the cliff? Round your answer to the nearest tenth of a second. \qquad
d) How far from the bottom of the cliff is the rock when half of the time has passed':
4. A penny is dropped into a tank of water at the water's surface. It falls to the bottom according to the relation $d=-3.5 t^{2}+35$, where d is the depth of the water measured in metres and t is the time after the penny was dropped, measured in seconds.
a) Complete the table of values for the relation $d=-3.5 t^{2}+35$. Round your answer to one decimal place.
b) How deep is the tank of water? \qquad

tima (S)	depth
0	
1	

c) How long will it take for the penny to reach the bottom of the tank?

